From SDSS to JDEM: Lessons I Learned

Nikhil Padmanabhan¹

¹Lawrence Berkeley Labs

11-20-2008 / Great Surveys

1/30

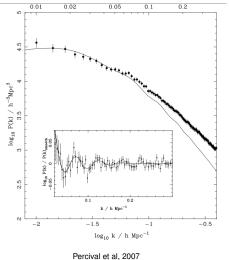
N. Padmanabhan (LBL) From SDSS to JDEM 11-20-2008

Outline

- Photometric vs. Spectroscopic
- Cross-Correlations
- The Baryon Oscillation Spectroscopic Survey
- 4 JDEM

Outline

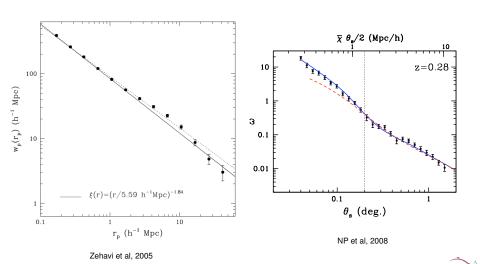
- Photometric vs. Spectroscopic
- Cross-Correlations
- The Baryon Oscillation Spectroscopic Survey
- 4 JDEM



Is Photometry enough??

Clearly not! But how much can we actually learn?

Large Scale Structure



10¹ € 10° 10⁻¹ $\Lambda^2(\mathbf{k})$ 10⁻² 10⁻³ 10-4 0.01 0.10 1.00 k (h Mpc⁻¹) NP et al, 2007



N. Padmanabhan (LBL) 11-20-2008 5/30

Galaxy Clustering

Quasar Clustering

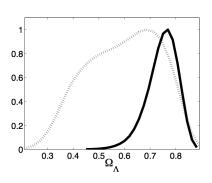
Is Photometry enough??

- Clearly not! But how much can we actually learn?
- With good photo-z's, lots of science possible.
- Complementary
 - Higher redshifts
 - Larger luminosity ranges
- Photo-z calibrations essential
- Some science not possible : eg. AGN activity, redshift space distortions, detailed spectral modeling
- How far can we go with just redshifts? ([G/P]rism surveys)
- What do we need spectra for? What resolutions?

Outline

- Photometric vs. Spectroscopic
- 2 Cross-Correlations
- The Baryon Oscillation Spectroscopic Survey
- 4 JDEM

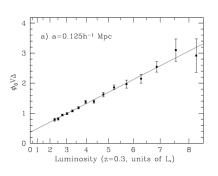
Whole ≠ Sum of Parts


- Lots of surveys! What do we learn by combining surveys?
- Ask questions of surveys that individual surveys will find hard (impossible?) to answer.
- Design surveys thinking about cross-correlation possibilities.
- Combining spectroscopic and photometric surveys
- Combining surveys of different wavelengths

10 / 30

The ISW effect

- The ISW effect constrains the late time acceleration.
- Hard to detect in the CMB due to cosmic variance
- 3.5 σ detection in cross correlation with different galaxy samples.



Ho, Hirata, NP et al. 2008

The Environment of LRGs

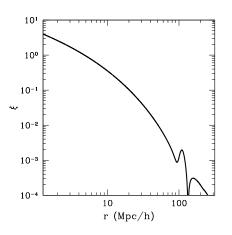
- What is the environment of luminous red galaxies in SDSS?
- Very little overlap between SDSS MAIN and LRG samples
- Cross-correlate with the SDSS photometric sample (which goes much deeper).

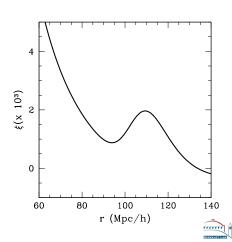
Eisenstein et al, 2005

Outline

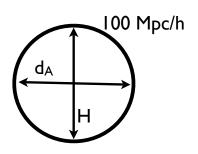
- Photometric vs. Spectroscopic
- Cross-Correlations
- The Baryon Oscillation Spectroscopic Survey
- 4 JDEM

Probes of Dark Energy


- The Homogeneous Universe
 - Constrain scale factor a(t) as a function of time
 - ▶ Observations constrain $d_A(z)$, $d_L(z)$, H(z)
 - Geometrical probes
 - SNe standard candles, baryon oscillations standard rulers
- Inhomogeneous Universe
 - ▶ Constrain $\delta(t)$ growth of fluctuations
 - Dynamical probes
 - Weak lensing, clusters, redshift space distortions

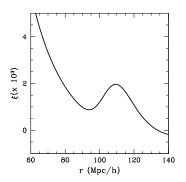

Standard rulers - completely analogous to standard candles!

The Correlation Function


Use feature in matter correlation function as a standard ruler. Use galaxies, neutral H as a proxy for matter.

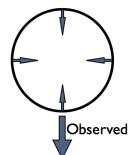
$d_A(z)$ and H(z)

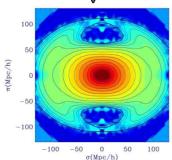
- \bullet Measure feature \bot and || to line of sight
- || constrain Hubble constant
- Internal consistency test
- More natural decomposition dilations and warping (NP & White, 2008)



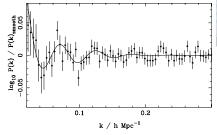
16/30

A Robust Ruler


- Simple underlying physics
- Scale separation : $r_{\rm gal,nlin} \ll r_{\rm BAO}$
- Smooth effects on BAO scales, robust probe
- Expect small systematic errors
- More later!



Probing Growth


- Redshift space distortions
- Velocity field sensitive to matter distribution.
- Velocity field distorts the galaxy correlation function; makes it anisotropic – redshift space distortions.
- Measuring z-space distortions allow measurement of growth of structure.
- Independent probe of growth (i.e. not weak lensing); tests a different aspect of structure formation.

BOSS: A next generation BAO experiment

- How to do a precisionz < 1 BAO expt.?
- After SDSS, then what?

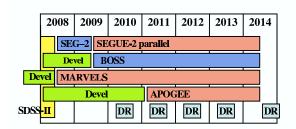
Percival et al. 2006

- SDSS imaging detects red galaxies to z ~ 0.8 (2SLAQ, AGES)
- The SDSS spectrograph still is one of the best wide field MOS.

BOSS in overview

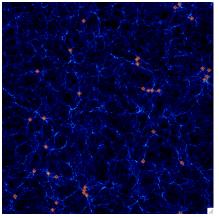
- $\Omega = 10,000 \text{ deg}^2$
- Fill in SDSS stripes in the south; 8500deg² in North, 3000deg² in South
- Luminous Red Galaxies : $z \sim 0.1 0.7$
- QSOs (Lyman- α forest) : $z \sim 2.3 3.3$
- 1% d_A , 2% H at $z \sim 0.35$, 0.6
- 1.5% d_A , H at $z \sim 2.5$
- Leverage existing hardware/software where possible
- PI: David Schlegel, SDSS-3 Director: Daniel Eisenstein
- The SDSS diaspora

BOSS: A brief history


July 2006	Competitive proposal to use (upgraded) SDSS telescope for next-generation BAO experiment
Nov 2006	BOSS proposal selected (from 7) for all
	dark+grey time for 5 of 6 years
Nov 2006	First BOSS collaboration meeting (NYU)
Feb 2007	DOE R&D proposal for upgrading SDSS
	spectroscopic system
Oct 2007	Approval from Sloan foundation
2007	Funding proposals in to NSF and DOE
2008	Approval from NSF; R&D funding from DOE
July 15, 2008	SDSS-III begins
Sept 2008	BOSS imaging begins
Fall 2009-2014	BOSS spectroscopic survey at APO

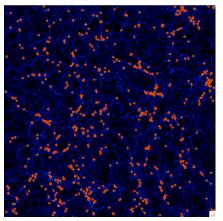
http://www.sdss3.org/

BOSS: As part of SDSS-3


- SEGUE-2: Kinematic and chemical structure from 350,000 stars in the outer Galaxy.
- APOGEE: High resolution IR spectroscopy of stars in the Galactic bulge, bar and disk.
- MARVELS: Radial velocity planet search around 11,000 stars
- **BOSS**: BAO with 1.5 million LRGs (z < 0.7) and 160,000 QSOs (2.3 < z < 3.3)

LRGs as tracers of LSS

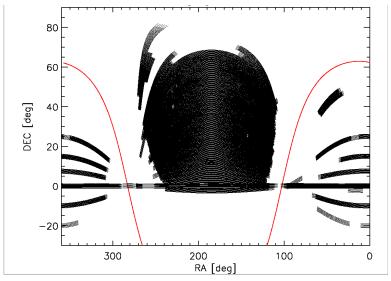
A slice 500 h^{-1} Mpc across and 10 h^{-1} Mpc thick.


SDSS, $z \sim 0.5$

23 / 30

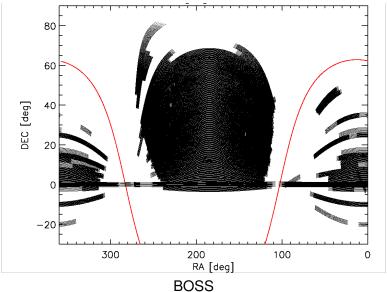
LRGs as tracers of LSS

A slice 500 h^{-1} Mpc across and 10 h^{-1} Mpc thick.



BOSS, $z \sim 0.5$

N. Padmanabhan (LBL) From SDSS to JDEM 11-20-2008 23 / 30


Imaging status

SDSS-II

Imaging status

N. Padmanabhan (LBL)

What's next for BOSS?

- July 15, 2008: SDSS-II ended, SDSS-III began.
- Complete 2-3000 deg² on imaging in the South in Fall 2008.
- Spectrographs being built right now, install in Summer 09.
- LRG/QSO spectroscopy Fall 2009 2014
- At which point, we should know....
 - $W_p = -??.?? \pm 0.03, W_a = ??.?? \pm 0.28$
 - $h = 0.?? \pm 0.008$, $\Omega_K = 0.?? \pm 0.002$

What's next for BOSS?

- July 15, 2008: SDSS-II ended, SDSS-III began.
- Complete 2-3000 deg² on imaging in the South in Fall 2008.
- Spectrographs being built right now, install in Summer 09.
- LRG/QSO spectroscopy Fall 2009 2014
- At which point, we should know....
 - $w_p = -??.?? \pm 0.03, w_a = ??.?? \pm 0.28$
 - $h = 0.?? \pm 0.008$, $\Omega_K = 0.?? \pm 0.002$

Next Generation Experiments

- WiggleZ: 1-2% distance measurements, 0.5 < z < 1.0, half completed
- BOSS:
 - ▶ 1% distance measurements, 0 < z < 0.6
 - ▶ 1.5% distance measurements, 2 < z < 3, new method
 - Started
- HETDEX: 1% distance measurements, 2 < z < 4
- PAU : 1% distance measurements, 0 < z < 1, photo-z++
-

Note: Interesting numbers of redshift surveys coming on line in the near future.

More Cosmology

- Precision measurements of H_0 (1%), Ω_K (0.2%)
- Constrains D(2)/D(1000) and D(0.5)/D(1000) to 0.6% and 1% within ΛCDM
- Improved large scale structure constraints (250,000 modes with k < 0.2)
- Improved measurements from the Lyman- α forest
- Improved measurements of neutrino masses
- A S/N=200 measurement of ξ_{gm} from galaxy-galaxy lensing, direct probe of D(z)
- Constrain $f_{nl} < \sim 10$
-

Galaxy Formation/ Evolution

- Evolution of massive galaxies
- Improved QSO clustering measurements at z > 2
- Piggy-back program will double N_{QSO} with z > 3.6
- Synergy with next generation imaging surveys (eg. Pan-STARRS) [cross-correlation studies, galaxy-galaxy lensing]
- Synergy with current/ next generation CMB surveys (eg. ACT) [SZ, kinetic SZ]
- Serendipitous stellar studies (from QSO targeting)
- Spectroscopic detection of galactic scale strong lensing systems
- Projects we haven't thought of.....

Outline

- Photometric vs. Spectroscopic
- Cross-Correlations
- The Baryon Oscillation Spectroscopic Survey
- 4 JDEM

... and JDEM??

- The design of JDEM is being worked out right now.
- JDEM aims to do supernovae, baryon oscillations, weak lensing.
- Likely will have an imaging and spectroscopic survey.
- Think of JDEM as SDSS in space.
- What is complementary to JDEM? LSST, low redshift 21-cm surveys,...
- JDEM will be much more than a dark energy measurement.

